micno

MSS1000 Series User Manual

Soft Starter

Model: MSS1000/

3AC 380V 5.5-800KW

Please hand the manual to ultimate user, and keep it for future reference

MICNO ELECTRIC CO., LTD. Version:1000[V3.3]

Preface

Thank you for choosing the LCD intelligent soft starter produced by our company. In order to give full play to the function of this product, before using, please read this manual carefully. Please operate and use correctly according to the procedures, And ensure the safety of the operator, When you find difficult problems in use and this manual cannot provide solutions, Please contact our company or local agents and dealers, We will serve you wholeheartedly.

Safety precautions

- > The soft start shall be installed or guided by professional technicians.
- > The power and specification of the motor shall be matched with the soft start as far as possible.
- > It is forbidden to connect capacitors at the output end (u.v.w) of soft start.
- The input and output connecting wires with the soft starter shall be wrapped with insulating tape.
- > The shell of soft starter must be reliably grounded.
- > During equipment maintenance, the input power must be cut off first.
- > The internal circuit board has high voltage. Do not repair it by nonprofessionals.

Chapter 1 Function and Features	1
1.1 Starter Function	1
1.2 Features	1
Chapter 2 Product Information	2
Chapter 3 Conditions of Use and Installation	2
Chapter 4 How It Works	3
Chapter 5 Basic Connection and external terminal	3
5.1 Schematic diagram of terminal wiring of soft starter	3
5.2 Secondary terminal sequence diagram of soft starter	4
5.3 Specification of soft starter external terminal	5
Chapter 6 Keyboard function and operation	6
Chapter 7 Soft starter parameter list	7
Chapter 8 Specification of soft starter parameters	10
8.1 Start method	10
8.1.1 Current limiting start	10
8.1.2 Voltage ramp start	11
8.1.3 Jump current limiting start	11
8.2 Stop Mode	12
8.2.1 Free Parking	12
8.2.2 Soft parking	12
8.3 Type Selection of soft starter	12
8.4 Overload protection	13
8.5 Analog current output function	14
8.6 Screen saver time	14
8.7 Screen contrast	15
8.8 Communication function	15
Chapter 9 Failure protection function and solution	19
Chapter 10 Trial Operation & daily maintenance of soft starter	21
10.1 Test run inspection and points for attention	21
10.2 Matters needing attention in daily maintenance	22
Chapter 11 Structure andoutline dimensions of MSS1000-G on-line intelligent soft starter	23
Chapter 12 Structure and outline dimensions of MSS1000 bypass intelligent soft starter	23
Chapter13 External Dimensions of MSS1000-N intelligent soft starter with built-in bypass	24
Product Warranty Card	26

Contents

Chapter 1 Function and Features

The Smart AC motor soft Starter is anew type of motor starting equipment which is designed and produced with power electronic technology, microprocessor technology and modern control theory. This product can effectively limit the starting current of asynchronous motor when starting. It can be widely used in fans, pumps, conveyors, compressors and other loads. It is an ideal replacement product for traditional star/triangle conversion, self-lotus voltage-reducing, magnetic control voltage-reducing and other voltage-reducing starting equipment.

1.1 Starter Function

- 1. Reduce the starting current of the motor, reduce the distribution capacity and avoid capacity investment.
- 2. Reduce the starting stress and prolong the service life of motor and related equipment. The smooth starting and soft stopping can avoid the surge and water hammer effect of traditional starting equipment.
- 3. A variety of starting mode and wide range of current, voltage settings, can adapt to a variety of load occasions, improve the process.
- 4. Improve the reliable protection function, more effective protection of motor and Related Equipment Safety.
- 5. Can be used for frequent starting and stopping occasions.

1.2 Features

- 1. The MSS1000 series AC motor soft starter uses high performance microprocessor technology for higher performance and wider voltage adaptation.
- 2. 3 kinds of starting mode can be chosen, which can make the motor realize the best starting effect.
- 3. Two parking mode can be chosen: Free Parking, soft parking.
- 4. On-line type and by-pass type can be set freely.
- 5. Two independent programmable output relays: It is convenient to realize interlock control with other devices, and has delay action function, delay time is adjustable.
- 6. The three-phase current value can be displayed at the same time, and the current value can be calibrated independently.
- 7. Large screen LCD machine interface, Chinese (Chinese display) and English two display modes, easy to operate.
- 8. Multiple protection monitoring functions, heat overload protection according to load requirements adjustable grade, multiple protection functions can be opened and closed independently.
- 9. The last 12 failure records can be checked to provide the basis for failure analysis.
- 10. A set of 4 ~ 20mA (0 ~ 20mA) analog outputs.
- 11. MODBUS RTU communication (RS485) is available. You can set parameters, operate and monitor by computer software.

12. Actual Power Setting: When the power of the soft starter is larger than the actual load power, the rated current of the soft starter can be set according to the actual load to match the actual power of the soft starter with the load, to ensure the start, operation, protection and other parameters of the accuracy.

Chapter 2 Product Information

Before leaving the factory, all the unctions and running tests of each AC motor soft starter are carried out. After receiving the equipment, users should check the following steps. If you find any problem, please contact the supplier immediately.

CHECK THE PRODUCT NAMEPLATE: Make sure the goods you received are in accordance with the products you ordered.

Check whether the product is damaged during transportation, such as: internal parts falling off, Shell sinking, deformation and line falling off.

Product qualification certificate an Operation Manual: Each soft starter is provided with one product qualification certificate and one operation manual.

Chapter 3 Conditions of Use and Installation

The service condition has certain influence to the soft starter's normal service and the service life, therefore please installs the soft starter in the place which meets the following service condition.

Power supply: Grid Power, self-contained power stations, diesel generator;

Input voltage: AC: 380V, 660V, 1140V (- 10% ~ + 15%) , 50Hz/60hz;

Applicable motor: General squirrel-cage Induction Motor (please specify when ordering winding motor);

Starting times: The Standard Products recommended to start and stop no more than 15 times per hour;

Cooling mode: Forced Cooling (on-line thyristor)/Natural Cooling (by-pass) ;

Installation: Wall hanging type, Cabinet Body Type;

Conditions of use: the intelligent AC motor soft starter should be equipped with bypass contactors;

Protection level: IP20 (55KW and below)/IP00 (75KW and above);

Environmental conditions: altitude blow 2000 meters, more than 2000 meters to reduce capacity use; the ambient temperature is between -25°C and 40°C;

Relative humidity: not more than 95%(20 °C ± 5 °C);

Pollution Environment: no flammable, explosive, corrosive gases, no conductive dust; Ventilation vibration: Indoor installation, good ventilation, vibration less than 0.5 g.

Chapter 4 How It Works

The MSS1000 series intelligent AC moor soft starter uses three pairs of anti parallel thyristors connected in series to the electronic circuit of the AC motor. By using the function of electronic switch of thyristor and controlling the change of trigger angle of thyristor by microprocessor, the opening degree of thyristor can be changed, thus the input voltage of motor can be changed, so as to control the soft starter of motor. When the starting is completed, the soft starter output reaches the rated voltage. At this point, the three-phase by-pass contactor KM is automatically controlled by the by-pass control signal, and the motor is put into power grid operation.

Chapter 5 Basic Connection and external terminal

5.1 Schematic diagram of terminal wiring of soft starter

figuer 5-1

Note: built-in bypass and on-line soft starters do not have L1, I2, L3 terminals and do not require external ac contactors KM.

5.2 Secondary terminal sequence diagram of soft starter

figuer 5-2

Note 1: Terminal (1)-(1) internal power supply, only the external access to the switch volume, does not need to access the power supply.

Note 2: Terminal 12 - 20 need to provide external power and load indicator circuit diagram, etc.

Note: There are two kinds of connection modes for external control start-stop signal. When two-wire control is used, the stop end is connected with the start end.

Terminal type	Terminal number	Terminal Name		Description
	R、S、T		Power input	Soft starter three-phase electric power input
Main	U. V. W		Soft starter output	Soft starter three-phase electric power input
circuit	L1、L2、L3	By-pass contact terminal		For use with bypass contactors. Only the external bypass type soft starter has this terminal, the built-in bypass type and thyristor on-line type soft starter does not have this terminal.
	Digital input	1	External starting	The soft starter can be started by short connection with the Common Terminal (5,6)
		2	The external controls are down	Disconnect from Common Terminal(5,6) to stop soft starter
Control		3	External instantaneous shutdown	Starting with the common terminal (5, 6) must be short-circuited, and disconnection will stop
loop		4	External Control Reset	In case of failure, Short connection with Common Terminal (5,6) can clear the failure stat
		5 6	Digital Input Common Terminal	Digital Input Terminal Common Terminal
	Analog output	7 8	4-20mA output positive	4-20mA output and 20mA corresponding current can be adjusted by parameters C10, C11 and C12

5.3 Specification of soft starter external terminal

	communication	9	RS485+	Used in Medbus PTU communication	
	communication	10	RS485-		
	Stand by	11	Stand by	No function, reserve	
		12	Programming Relay	Programmable output can be selected	
		12	1 normally on	from the following features	
			Programmable		
	Programming	12	output can be	0 No movement	
	Relay 1	15	selected from the	1. Rewar On	
			following features	1. Power On	
		14	Programming Relay	2. Solt start	
			1 normally closed	3. Bypass action	
	Programming	15	Programming Relay	4. Solt stop	
			1 normally on	5. Runtime action	
		16	Programming Relay	b. Standby action	
	Relay 2		1 common	7. Manunction action	
		47	Programming Relay	8. Invisior breakdown	
		17	1 normally closed		
		10	By-pass relay		
		10	always on		
		10	By-pass relay	Bu page Operation Sustian	
	Bypass relay	19	common	ву-pass Operation Suction	
		20	By-pass relay		
		20	normally closed		

Chapter 6 Keyboard function and operation

The soft starter uses the large screen liquid crystal display module and the micro-movement type key to constitute the Operation Display Keyboard, 6 micro-movement type keys. It can realize the start, stop operation, parameter equipment, modification, fault inquiry, fault reset and so on.

Softsta	rter	
·提序 PRG		RETURN
运行 RUN	\otimes	停止 STOP

Soft starter door panel opening dimensions 112 * 89mm

- 1. Press the "PGR" key to enter the parameter group and press \triangle or ∇ to switch the parameter group.
- 2. Parameter modification, press the "PRG" key to enter the parameters, press or \bigvee to modify the parameter value. Then press the "PRG" key to save the parameters, press the "return" key to return to the main interface.
- 3. Press the "Run" button to start the soft starter.
- 4. Press "Stop" to stop the soft starter.
- 5. Press the "Return" button to view the failure record while the machine is in standby mode.
- 6. Long press the \triangle key, there will be 2 options: OK and ESC. OK means clear the fault record, ESC: not clear.
- 7. Long-press the ∇ key, there will be 2 options: OK and ESC. OK means reset, ESC: not reset.

Principal term	Code	Subordinate term	Ра	rameter	Default value	Notes
term A Basic parameter	A00	Control Mode	 Do not Keyboa Extern Keyboa extern Comm Contro Keyboa +comm Extern Extern Keyboa extern 	start or stop ard control al control ard + al control unication ard nunication al control+ unications ard + al control	3: keyboard + external control	
	A01 A02	Starting Mode Starting Current Limiting Percentage	0. Curren 1. Voltag 2. Break- ramp s 3. Retent 509	t limiting start e ramp start through voltage tart ion $6\sim$ 600%	0:Current limiting start 300%	
	A03	Percentage of Starting Voltage	10'	%~80%	35%	
	A04	Voltage ramp starting time	1s	~120s	15s	

Chapter 7 Soft starter parameter list

	A05	Surge voltage	10%~95%	80%	
	A06	Pop-up time	10ms \sim 2000ms	500ms	
	407	Chan Mada	0: Free Parking	O. Free Deality a	
	A07	Stop Wode	1: Soft parking	U: Free Parking	
	A08	Soft Stop Time	1s~0s	5s	
	A00	Soft starter type	0:On-line type	1. Pupace tupo	
	AUS	Soft starter type	1:Bypass type	т. вуразз туре	
	BOO	Starting	0~30	10	0:Shut
		overload level	0 30	10	down
	B01	Run overload level	0~30	10	0:Shut
					down
	B02	Run-over	0%~00%	0%	0:Shut
		multiple			down
	B03	Run overcurrent	0s~6000s	55	
		protection time			
		Overvoltage			100:
	B04	protection value	100%~140%	120%	Shut
		·			down
	B05	Overvoltage	1s \sim 60s	5s	
		protection time			
	B06	Under voltage			100:
B Basic		protection value	60%~100%	80%	Shut
parameter					down
	B07	Under Voltage	1s \sim 60s	5s	
		protection time			100.
	B08	Three-phase	20%~100%	40%	Shut
		unbalance	20% 100%	40%	down
		Three-nhase			down
	B09	unbalance time	0.1s~60.0s	10.0s	
					0.Shut
	B10	Start Timeout	0s~150s	60s	down
					0:Shut
	B11	Click timeout	0s~15s	Os	down
		Under load			0:Shut
	B12	protection value	0%~100%	0%	down
		Protection time			
	B13	under load	1s~60s	10s	
	C 000		FEATURES:	8: Malfunction	
C D	00	Programmable relay1	0. No movement	action	
C Basic	C01	Programmable	1. Power on	0.5	
parameter	C01	output delay1	2. Soft start	US	
	C02	Programmable relay2	3. Bypass action	6:Runtime action	

	C03	Programmable output delay2	 Soft stop Runtime action Standby action Malfunction action Thyristor breakdown delay:0-600s 	Os	
	C04	Correspondence address	1~127	1	
	C05	Communication baud rate	0: 2400 1: 4800 2: 9600 3: 19200	2:9600	
	C06	A phase current calibration	10%~1000%	100%	
	C07	B phase current calibration	10%~1000%	100%	
	C08	C phase current calibration	10%~1000%	100%	
	C09	AB Calibration value of phase voltage	10%~1000%	100%	
	C10	4-20mA Lower bound calibration	0%~150.0%	20.0%	
	C11	4-20mA Upper Bound calibration	0%~150.0%	1000%	
	C12	4-20mA Upper bound current	50%~500.0%	20%	
	D00	Soft starting rated current			
	D01	Sot starting rated voltage			
D Basic	D02	Rated current of motor			
parameter	D03	Soft Start times			
	004	Cumulative			
	004	running time			
	D05	Maser software			
		version			
	D06	User password	000000	0	
E Basic parameter	E00	Standby display mode	 0: Patterns 0 Single-phase current display 1: Patterns 1 Three-phase current display 	0:Pattern 0	

E01	Run display mode	0: Patterns 0 Single-phase current display 1: Patterns 1 Three-phase current display	0:Pattern 0	
E02 Operating 0 language selection 1		0:English 1:Chinese	1:Chinese	
E03	Screen saver time	0s~1800s	120s	0:No Protect -ion
E04	Screen saver time			
E05	Screen contrast	0~115		

Note:

o: Indicates that the parameter value can be modified when the soft starter is stopped and running.

- © : Indicates that this parameter value cannot be modified while the soft starter is running.
- •: Indicates that the parameter value is a read-only parameter and cannot be modified.

Chapter 8 Specification of soft starter parameters

8.1 Start method

The AC motor soft starter has the following 6 starting modes, which users can choose according to their load conditions.

- 0: Current limiting start
- 1: Voltage ramp start
- 2: Jump current limiting stat

All start modes except point start are subject to B11 start timeout limit, soft starter reports start timeout failure and stops when the start time exceeds the start timeout limit, and B11 is set to 0, that turns off the start-up timeout protection.

8.1.1 Current limiting start

After starting, the motor current quickly rises to the set current Value Im, and keeps the output current not more than this value, so that the motor gradually increases, when the motor is close to the rated speed, the motor current quickly drops to the rated current le, completing the starting process, Figure 8-1.

The current limiting starting mode is usually used in the situation where the starting current is strictly required, especially when the power grid capacity is relatively small. When the starting capacity is to be limited, the current limiting multiple can be set according to the requirements, generally between 2.5 and 3 times, too small a setting can also cause a failure to start properly. When current-limiting starting is adopted, the starting time is related to the current-limiting multiple, the larger the current-limiting multiple, the shorter the starting time, and vice versa.

Parameters related to "Current limiting start":

A01. Starting Mode, A02. Starting current limiting percentage Figure 8-1

8.1.2 Voltage ramp start

After starting, the output voltage of the soft starter rises rapidly to the "Starting voltage" value u 1, and then gradually increases the output voltage according to the "Voltage ramp starting time" until the starting is completed, as shown in Figure 8-2.

Voltage ramp starting mode s suitable for inertia load, or the starting current requirements are not strict, but the starting stability requirements are higher occasions. This starting mode can greatly reduce the starting impact and mechanical stress. The larger the initial voltage U 1 is, the larger the initial torque is, but the larger the impact is. The voltage ramp starting is also controlled by the limited current starting multiple, that is, the starting current will not exceed the starting limit current value during the voltage ramp starting. This measure is to prevent the system from damage caused by improper parameter setting, therefore, the starting current limit should be raised properly when using voltage ramp mode. The length of the starting process is related to the setting value of the starting time and the weight of the load. Parameters related to "voltage ramp start":

A01. Starting Mode, A03. starting voltage percentage, A04. Voltage ramp start time, A02. Starting current limiting percentage

Figure 8-2

8.1.3 Jump current limiting start

Some static resistance of the load, in the moment to start a larger Torque, also can start normally; you can choose this starting mode. Start, soft starter instantaneous output a higher voltage (time can be set), so that the motor rotation, and then according to the current limit start mode starting, until the completion of starting, as shown in Figure 8-3.

Parameters related to "jump current limiting start":

A01. Starting Mode, A03. starting voltage percentage, A04. Voltage ramp start time

A02. Starting current limiting percentage

A05. Surge voltage, A06. Pop-up time

Figure 8-3

8.2 Stop Mode

The soft starter has the following two stop modes:

- 0: Free Parking
- 1: Soft parking

8.2.1 Free Parking

When receiving the Stop Command, soft starter control bypass contactor disconnects, at the same time, block the main circuit thyristor output voltage, motor according to inertia gradually stop.

8.2.2 Soft parking

In this shutdown mode, the motor power supply is switched from the by-pass contactor to the main circuit thyristor, and the control output voltage gradually decreases until the motor stops smoothly. The model is generally used to prevent the vertical water supply pipeline equipment in the moment of Horizontal Stop Water Hammer Phenomenon, to extend the service life of pipeline valves.

The parameters associated with "Soft parking" are:

A07. Stop Mode, A08 soft stop time

8.3 Type Selection of soft starter

You can choose online or bypass type by parameter A09. On-line soft starter saves the trigger state of the

cassette tube in the running state, which is used for the on-line operation of the soft starter. The trigger state is saved by the thyristor in the running state of the online soft starter, which is used for the on-line work of the soft starter. In by-pass type (including built-in bypass and external bypass), the thyristor stops triggering in the running state, and the bypass contactor is responsible for turning on the main circuit when the motor runs at full voltage.

8.4 Overload protection

Anti-time limit control is used for overload protection Duration of protection:

Time to protection: $t = \frac{35 \times Tp}{(I / Ip)^2 - 1}$

Note:

t : action time

Tp : protection level

I : running current

Ip : motor rated current.

Motor overload protection characteristic curve: Figure 8-4

Figure 8-4

Overload Multiplier Overload Level	1.05le	1.21le	1.5le	2le	3le	4le	5le	6le
1	∞	79.5s	28s	11.7s	4.4s	2.3s	1.5s	1s
2	∞	159s	56s	23.3s	8.8s	4.7s	2.9s	2s
5	∞	398s	140s	58.3s	22s	11.7s	7.3s	5s
10	∞	795.5s	280s	117s	43.8s	23.3s	14.6s	10s
20	00	1591s	560s	233s	87.5s	46.7s	29.2s	20s
30	x	2386s	840s	350s	131s	70s	43.8s	30s

 ∞ : It means no movement

8.5 Analog current output function

The analog current output function can realize the analog current output function of 4-20mA, 0-20mA, etc. .

C10 4-20MA lower limit calibration: used to set the upper limit of analog current output, 20% means 4mA.

C11 4-20MA upper limit calibration: for setting analog current output upper limit value, 100% means 20mA.

C12 4-20MA upper limit current: used to set the upper limit of analog current output corresponding to the soft starter current.

"Analog current output "parameter setting example:

Example 1

20mA corresponds to 2 times rated current of motor, 4mA corresponds to 0A

C12=200% C10=20% C11=100%

Example 2

20mA corresponds to 1 times rated current of motor, 4mA corresponds to 0A

C12=100% C10=0% C11=100%

Note: Parameters C10 and C11 can also be used for fine tuning if the analog current output is biased.

8.6 Screen saver time

Screen saver time is used to set the screen back lighting time. After the last operation of the keyboard, after the EO3 screen saver time, the screen backlight is turned off to save energy and delay the life of the screen backlight. The screen saver time is set to 0 to turn off this feature, and the screen always remains light.

8.7 Screen contrast

If the screen displays too light or too thick, please use parameter E05 to adjust the contrast on the soft starter screen to a comfortable level.

8.8 Communication function

Soft starter can be built-in Modbus RTU communication function, communication protocol please see the communication manual.

Modbus	Eunction name	Setting Range	Default	Notes
address			value	
		0. Do not start or stop		
		1. Keyboard control		
		2. External control		
		3. Keyboard +		
		external control		
		4. Communication		
0~000	Control Modo	control	3: Keyboard	
0~0000		5. Keyboard	+ external	
		+communication		
		6. External control+		
		communications		
		7. Keyboard +		
		external control		
		+ communication		
	Stating Mode	0. Current limiting start		
		1. Voltage ramp start		
0×0001		2. Break-through		
		voltage ramp start		
		3. Retention		
	Starting			
0×0002	current limiting	50%~600%	300%	
	percentage			
×0003	Percentage of	10%~80%	35	
~0005	starting voltage	10% 80%	55	
0×0004	Voltage ramp	1ເ∼120ເ	15c	
0~0004	starting time	13 1203	133	
0×0005	Surge voltage	10%~95%	80%	
0×0006	Pop-up time	10ms~2000ms	500ms	
0×0013	Ston Mode	0: Free Parking	0: Free	
0,0013		1: Soft parking	Parking	

0×0014	Soft Stop Time	1s~60s	5s	
0×0015	DC Brake Force	10%~100%	40%	
0.0010	Coft starter trues	0:On-line type	1: Bypass	
0×001B	Soft starter type	1:Bypass type	type	
0×001C	Programmable relay1	 FEATURES: 0. No movement 1. Power on 2. Soft start 3. Bypass action 4. Soft stop 5. Runtime action 6. Standby action 7. Malfunction action 8. Thyristor breakdown action 	8:Malfuncti on action	
0×001D	Programmable output delay1	0~600s	Os	
0×001E	Programmable relay2	 FEATURES: 0. No movement 1. Power on 2. Soft start 3. Bypass action 4. Soft stop 5. Runtime action 6. Standby action 7. Malfunction action 8. Thyristor breakdown action 	6:Runtime action	
0×001F	Programmable output delay1	0~600s	Os	
0×0020	Stand by			
0×0021	Stand by			
0×0022	Stand by			
0×0023	A Phase current calibration	10%~1000%	100%	
0×0024	B Phase current calibration	10%~1000%	100	
0×0025	C Phase current calibration	10%~1000%	100	
0×0026	AB Calibration value of phase voltage	10%~1000%	100%	
0×0027	Stand by			
0×0028	Stand by			

0×0029	4-20mA Lower bound calibration	0%~1500%	20.0%	
0×002A	4-20mA Upper bound calibration	0%~1500%	100.0%	
0×002B	4-20mA Upper bound current	50%~500.0%	200%	
0×002D	Starting Overload level	0~30	10	0: no protection
0×002E	Run overload level	0~30	10	0: no protection
0×002F	Stan by			
0×0030	Stand by			
0×0031	Run-over multiple	0%~600%	0%	0: no protection
0×0032	Run overcurrent protection time	0s∼6000	5s	
0×0033	Overvoltage protection value	100%~140%	120%	100: no protection
0×0034	Overvoltage protection time	1s~60s	5s	
0×0035	Under voltage protection value	60%~100%	80%	100: no protection
0×0036	Under voltage protection time	1s~60s	5s	
0×0037	Three-phase unbalance	20%~100%	40%	100: no protection
0×0038	Three-phase unbalance time	0.1s~60.s	10.0s	
0×0039	Start Timeout	0s~150s	60s	0: no protection
0×003A	Click timeout	0s~150s	Os	0: no protection
0×003B	Under load protection value	0%~100	0%	0: no protection
0×003C	Protection time under load	1s~60s	10s	
0×003D	Correspondence address	1~127	1	
0×03E	Communication Baud rate	0: 2400 1: 4800 2: 9600 3: 19200	2:9600	
0×03F	Communication Mode	n,8,1		

0×0043~	Stand by			
0~0003	Soft starting			
00064	rated current		Read only	
0×0065	Soft starting		Read only	
	Pated current			
0×0066	of motor			
0×0067	Soft Start Times		Pood only	
0×0007	Cumulativa		Redu Olliy	
0×0068			Read only	
	Master seftware			
0×0069	waster software		Read only	
0×0064	Version		Bood only	
0×000A			Read Only	
0×006B	Stand by			
0×006F	Cofficient and a state of			
00100	Soft starter status		Read only	
0×0101	Current fault		Read only	
0×0102	Average voltage		Read only	
0×0103	Average current		Read only	
0×0104	Percentage of		Read only	
	output voltage			
0×0105	Percent		Read only	
	Average current			
0×0106	Apparent power value		Read only	
0×0107	Three-phase	Read only		
	current unbalance	incad only		
0×0108	A Phase current value		Read only	
0×0109	B Phase current value		Read only	
0×010A	C Phase current value		Read only	
0~0108	AB Phase		Pood only	
0×0108	voltage value		Read Only	
0×0105	Current elapsed		Pood only	
0×010E	time (minutes)		Redu Olliy	
0×010F \sim	Stand by			
0×011F	Stand by			
0×0120	Fault record 1		Read only	
0×0121	Fault record 2		Read only	
0×0122	Fault record 3		Read only	
0×0123	Fault record 4		Read only	
0×0124	Fault record 5		Read only	
0×0125	Fault record 6		Read only	
0×0126	Fault record 7		Read only	

0×0127	Fault record 8			Read only
0×0128	Fault record 9			Read only
0×0129	Fault record 10			Read only
0×012A	Fault record 11			Read only
0×012B	Fault record 12			Read only
0×012C	Ctoud by			
0×012F	Stand by			
	Control Command	0×0001	Start up	
0×0130	Control Commanu Desister	0×0003	Stop	Just write
	Register	0×0004	Clear the fault	

Chapter 9 Failure protection function and solution

No.	Fault	Possible Cause	Solution		
			Check whether the three-phase power supply		
1	Input Phase	Incoming power phase	is a lack of phase.		
Ť	failure	failure	Check whether the power supply line and		
			circuit breaker is in good condition		
2	Output Phase	Inferior notch phace failure	Check if the motor wiring is good, and		
2	failure		whether there is fault in the motor		
		1、Motor overload start	1、Check if there is overload		
		2、Incorrect Motor rating	2、Check if parameter 02 is set correctly		
	Rupping	current setting	3、Check if parameter 01 is set properly		
3	overload	3、The overload level	4、Adjust parameters C6, C07, C08 to make		
	ovenoad	election is inappropriate	the three-phase display current of soft starter		
		$4\sqrt{1}$ The current reading is	accord with the actual current		
		inaccurate			
		1、Motor overload	1、Check the load situation, whether there is		
		operation	overloading phenomenon		
		2、Incorrect Motor rating	2、Check that the parameter D02 is set		
	Starting	current setting	correctly		
4	overload	3、The run overload level	3、Check whether the parameter B00 is set		
	ovenouu	selection is not appropriate	properly		
		4、The current reading is	4、Adjust parameters C6, C07, C08 to make		
		inaccurate	the three-phase display current of soft starter		
			accord with the actual current		
		1、Motor underload	1、Adjust parameters B12 and B13 to		
		parameter setting is not	appropriate values		
5	Starting	correct	2、Adjust parameters C6, C07, C08 to make		
		2、The current reading is	the three-phase display current of soft starter		
		inaccurate	accord with the actual current		
6	Current	1、There's something	1、Replacement or repair of motor		

	imbalance	wrong with the motor coil	2、Tighten the terminals again
		2、Faulty connection of	3、Adjust parameters C6, C07, C08 to make
		main line terminal	the three-phase display current of soft starter
		3、The current reading is	accord with the actual current
		inaccurate	
		1、Soft starter starts too	1、Increase the start interval, wait for the soft
		often	starter to cool before the next start, or add a
		2. The external temperature	cooling device to cool down the soft starter
	C - (L	of soft starter is too high	faster
7	Softens and	3、The soft starter is	2、Improve the soft starter of the external
	overneats	surrounded by larger	environment, or for the use of capacity
		heating devices and is too	reduction
		compact to be mounted	3. Improve the layout r strengthen the cooling
			intensity in the cabinet
		1. The power supply voltage	1、Adjust the supply voltage of the
	Quantalitation	is too high	transformer
8	overvoltage	2、The current reading is	2、Adjust the parameter C09 to make the
	Tault	inaccurate	display voltage of the soft starter consistent
			with the actual voltage
		1、Power supply voltage is	1、Adjust the transformer power supply
		too low	voltage; check the incoming cable is too small,
		2、The current reading is	check the power margin of the transformer is
9	Under Voltage	inaccurate	too small
	Tault		2、 Adjust the parameter C09 to make the
			display voltage of the soft starter consistent
			with the actual voltage
		Two-phase thyristor	The fault will be reported if there is current in
10	Thyristor	breakdown, soft starter in	the shutdown state, power cut off, check
10	breakdown	the state of shutdown	whether there is breakdown phenomenon
		current flow	of two-phase thyrisor
			1. Check that the B10 setting is appropriate 2.
	Start	The start time exceeds the	Check if the load is too heavy and the starting
11	Timoout	P10 cotting	time is too long
	lineout	BIO Setting	3、Adjust the starting parameters properly to
			shorten the starting time
		Click time exceeds B11	1、 Check that the B10 setting is appropriate
12	Click timeout	click time exceeds BII	2 、 Shorten point-to-action time parameter
			B11
		1、Running current is too	1、 Check the load situation, whether there is
		high	overloading phenomenon
12	Running	2、 Incorrect setting of	2、 Check that the parameter D02 is setting
12	overcurrent	motor rated current	correctly
		3、The run-through value is	3、 Check whether the parameter B02, B03 is
		not set correctly	set properly

		4、The current reading is	4、Adjust parametersC06, C07, C08 to make
		inaccurate	the three-phase display current of soft starter
			accord with the actual current
1.4	Internal fault	Soft starter sending internal	Try to re-power to see if it is resolved, if it is
14 Internaliault		hardware failure	not resolved, please contact the manufacturer

Chapter 10 Trial Operation & daily maintenance of soft

starter

10.1 Test run inspection and points for attention

In order to run safely before electrification should be checked in accordance with the following terms.

% Does the soft start power match the motor power? It is available through D02. Motor rated current item, according to the motor nameplate current value set.

% Does the motor insulation meet the requirements?

% Is the input and output wiring of the main circuit correct?

% Is the input and output wiring of the main circuit correct?

% Check with multimeter whether there is short circuit in the three-phase power supply (R, S, T) ?

X After power-on, display "Stand-by" means in the normal state of ready to start, you can use the "Point to move" way to check whether the motor steering is correct, if not correct, replaceable motor end arbitrary two-phase.

 \times During the trial operation, if the starting state of the motor is not ideal, the starting and stopping parameters can be set according to the parameter list, and the starting mode and parameters such as current, voltage and time can be modified accordingly.

% If the fault protection appears in the whole process of power supply and operation, the fault state will be displayed, please follow the corresponding tips in Chapter 9 to deal with it.

% Do not open the cover of the machine after the soft starter is powered on to avoid electric shock.

X During the trial operation, if abnormal phenomena are found, such as abnormal sound, smoke or peculiar smell, the machine should be stopped quickly, the power supply should be cut off, and the cause should be checked.

 \times In the case of soft starter output motor is not connected, then U, V, W three-phase induction voltage, is a normal phenomenon, connected to the motor after this induction voltage can disappear.

10.2 Matters needing attention in daily maintenance

X Induction Voltage: When the power supply is connected to the input terminal of the AC motor soft starter, the output terminal of the soft starter will have an induction voltage when the load is open, even when it is stopped. This is caused by the leakage current of the thyristor, which is normal. The induction voltage will disappear after the motor is connected. Therefore, attention should be paid to the risk of electric shock.

※ Reactive power compensation: If a reactive power compensation circuit with higher power factor needs to be installed in the distribution circuit, the reactive power compensation capacitor should be connected to the input end of the soft starter, not to its output end; otherwise, the power device of soft starter will be damaged.

% Insulation Test: Do not use megohm meter to measure the insulation resistance between the input and output of the motor soft starter, otherwise the power device and the Control Board of the soft starter may be damaged by overvoltage.

X Circuit Connection: The input and output of the motor soft starter cannot be connected inversely. Otherwise the soft starter or motor may be damaged.

※ By-pass contactor wiring: When Motor soft starter is equipped with by-pass contactor, the phase sequence of soft starter output U, V, W and by-pass output L11, L12, L13 must be same.

X External Control Terminal: The External Control Terminal of the AC motor soft starter starts, stops, actuates, resets, and is public. No external power shall be introduced, or the control panel of the soft starter will be damaged.

% In the case of more dust, dust cleaning should be carried out regularly; otherwise the insulation level and heat dissipation effect of soft starter will be reduced, resulting in failure or damage.

 \times In a humid environment, such as long-term non-use of soft starter, before use, must be dehumidified treatment (such as drying with a hair dryer or electric oven), otherwise, as a result of moisture or condensation, reduce the insulation level of soft starter, resulting in creepage, short circuit, damage the soft starter.

Notice of order

% when ordering, please inform the supplier of the product model, specification, load condition and use condition so as to select the product correctly.

% AC motor external type products should be equipped with bypass contactors.

% For users who have special conditions or requirements for this product, please indicate to the supplier at the time of ordering. We will provide perfect service.

% If the load is wound motor, the order should be stated.

Chapter 11 Structure and outline dimensions of MSS1000-G on-line intelligent soft starter

	Overall dimensions(mm)			Installation dimension		
Specifications	Н	W	D	H1	W1	Φ
5.5KW-75KW	282	156	190	267	100	M6
90KW-160KW	384	410	243	360	351	M8
185KW-200KW	434	410	243	410	351	M8
250KW-400KW	494	410	253	460	351	M10
500KW-630KW	612	453	310	590	393	M10
700KW-800KW	702	493	310	690	433	M10

Chapter 12 Structure and outline dimensions of MSS1000 bypass intelligent soft starter

5.5kW–75kW

	Overall dimensions(mm)			Installation dimension		
Specifications	н	W	D	H1	W1	Φ
5.5KW-75KW	273	145	168	245	100	M6
90KW-200KW	385	260	205	358	226	M8
250KW-320KW	409	290	205	380	256	M8
400KW-500KW	427	330	205	440	296	M10
630KW-720KW	467	330	205	440	296	M10

Chapter13 External Dimensions of MSS1000-N intelligent

soft starter with built-in bypass

	Overall dimensions(mm)			Installation dimension		
Specifications	н	w	D	H1	W1	Φ
11KW-75KW	335	180	178	315	120	M6
90KW-200KW	496	310	205	476	252	M8
220KW-320KW	559	348	228	539	289	M10

	Rated	Rated			
Softer model	power	current	(MCCB)	Bypass	Primary line
	(KW)	(A)	(A)	contactor	(mm²)
MSS1000/005-3	5.5	11	32	MSS1000-16	Copper 2.5
MSS1000/007-3	7.5	15	40	MSS1000-16	Copper 4
MSS1000/011-3	11	23	63	MSS1000-25	Copper 6
MSS1000/015-3	15	30	63	MSS1000-40	Copper 10
MSS1000/018-3	18.5	37	100	MSS1000-40	Copper 10
MSS1000/022-3	22	45	100	MSS1000-63	Copper 16
MSS1000/030-3	30	60	100	MSS1000-63	Copper 25
MSS1000/037-3	37	75	100	MSS1000-100	Copper 35
MSS1000/045-3	45	90	100	MSS1000-100	Copper 35
MSS1000/055-3	55	110	160	MSS1000-160	Copper 35
MSS1000/075-3	75	150	250	MSS1000-160	Cop35/ Alu.50
MSS1000/090-3	90	180	250	MSS1000-250	Cop50/ Alu.70
MSS1000/110-3	110	230	350	MSS1000-250	Cop70/ Alu.95
MSS1000/132-3	132	260	400	MSS1000-400	Cop95/Alu.120
MSS1000/160-3	160	320	400	MSS1000-400	Cop95/Alu.150
MSS1000/185-3	185	370	400	MSS1000-400	Cop120/Alu.185
MSS1000/200-3	200	400	400	MSS1000-400	Cop150/Alu.185
MSS1000/250-3	250	500	630	MSS1000-630	Cop185/Alu.240
MSS1000/280-3	280	560	630	MSS1000-630	Cop240/Alu.300
MSS1000/320-3	320	640	630	MSS1000-630	Cop240/Alu.400

Product Warranty Card

	Company Add:				
Customer info	Company name:	Contact:			
	Zip code:	Phone:			
	Model:				
Product info	Serial number:				
	Agent name:				
Fault info	Maintenance time and content				
	Maintenance person:				

Please read the instruction manual carefully to understand the contents for correct installation,

circuit connection, operation and maintenance.

The technical specification of this product changes without prior notice.

This manual should be kept until the end of the product.

This instruction manual should be kept in the hands of the actual end user.